We’re equipping a new generation of innovators to address the most critical issues of our time by looking to nature to design solutions that give more than they take.
Couple that statement with some of our recent press: CBS, the BBC, and PBS have all run stories on biomimicry featuring either Janine or one of our Ray of Hope Prize winners from the Launchpad. It is phenomenal coverage for such a small organization, albeit one that makes big ripples.

Over the last two years, the period covered by this report, we have refined our strategic vision around this core question of impact. Impact is a tricky one to measure when you are talking about a practice, a paradigm shift, a movement. Do we count the millions of people who learn about biomimicry or use our database, AskNature? Do we look to the amount of carbon sequestered or water captured through our Launchpad teams’ inventions? Or do we count the number of K-12 and university students practicing biomimicry through our design challenges? Yes. All of the above. And yet the nagging question remains, how quickly can we expect the world to look different because of our efforts? That’s the real impact we seek: the redesign of everything according to the principles and patterns found in nature.

So we asked ourselves, how do we reach the people who make our homes, our energy systems, our rainproof jackets, our blue jeans? We landed on an approach that reaches people across a continuum of learning - from middle-school student through an early-stage start-up.

By offering free tools and resources like AskNature, we provide open ACCESS to learning biomimicry. By creating opportunities to PRACTICE biomimicry in action via design challenges, we provide the platform for students and educators to learn and teach with a different lens. Finally, by providing a pathway to entrepreneurship for early-stage biomimetic innovations, we work to bring about a CULTURE SHIFT toward seeing biomimicry as “a reflex,” as our board member Marilyn Waite called it.

In the following pages, you’ll learn about the ever-widening impact we’re having across the globe. But what’s less quantifiable is the way people become transformed by their exposure to biomimicry - those who no longer can or want to design in a disposable way. That’s what gives me hope that we can and will meet the critical challenges ahead.

Thank you for being part of this community and for helping us, as Janine says, remember that a sustainable world already exists.
A MESSAGE FROM JANINE BENYUS

Given its depth and breadth, how does one categorize biomimicry? Is it a design discipline, a branch of science, a problem-solving method, a sustainability ethos, a movement, a stance toward nature, a new way of viewing and valuing biodiversity? Yes, yes, and yes, which is why biomimicry is an idea that acquires people, a meme that propagates in our culture like an adaptive gene.”

Biomimicry Institute co-founder

A MESSAGE FROM THE BOARD CHAIR

When I was introduced to biomimicry, I thought, “Finally! A scientific methodology showing how we humans would do well emulating nature rather than trying to control it.” These are challenging times we live in with many complex and seemingly intractable problems. It’s important we have something positive to work for to create the world we know is possible, necessary even. Shifting culture towards these values takes time and the Institute has been planting the seeds for biomimicry to take root for many years.

Now things are really taking off -- it’s exciting to see the enormous increase in the demand for Design Challenges, the transformation that occurs in participants, and the general appetite for more climate solutions applying nature’s wisdom. Now is the time for the Institute to leap! It’s my honor and privilege to serve on the Board of Directors. Thank you for joining us - the Institute truly could not do this work without you and your support.

Erika Harrison
Biomimicry Institute board chair
OUR MISSION, VISION & IMPACT

THROUGH EDUCATION AND ENTREPRENEURSHIP, WE’RE HELPING PEOPLE CREATE NATURE-INSPIRED SOLUTIONS FOR A HEALTHY PLANET.

OUR THEORY OF CHANGE

We envision a world in which human design is as good and regenerative as nature itself. Here is how our programs are getting us there.

ACCESS: Learning nature-inspired design should be accessible to all. That’s why we provide high quality materials and services for learning, teaching, and practicing biomimicry.

PRACTICE: Biomimicry is a science AND an art that is best learned by doing. We provide a platform for students and entrepreneurs to practice nature-inspired design with real-world applications.

SUPPORT: Around the world, researchers and entrepreneurs are creating sustainable innovations. We help them with mentorship, connections, prize money, and by telling their stories. These stories shift our culture.

BIOMIMICRY PROGRAMS

YOUTH EDUCATION

BIOMIMICRY GLOBAL DESIGN CHALLENGE & LAUNCHPAD

ASKNATURE

Project Drawdown identified the most substantive, existing solutions to address climate change. Out of the top 25 solutions, biomimicry can be applied to at least 15, including refrigerants, wind turbines, food waste, solar energies, and regenerative agriculture.

LEARN MORE:
www.drawdown.org/solutions

Biomimicry could account for $425 billion of US GDP and $1.6 trillion of total global output by 2030.

- THE FERMANIAN BUSINESS AND ECONOMIC INSTITUTE
BUILDING A NEW GENERATION OF “BIO-LINGUAL” INNOVATORS

The 2018 Ray of Hope Prize® winner, Nucleário, demonstrates what each biomimicry enterprise is capable of achieving. Inspired by winged seeds, bromeliads, and forest leaf litter, the Nucleário device reduces seedling maintenance, offering a smarter, cheaper, and faster approach to large-scale forest restoration. They have had over 200 inquiries to buy their device, and are working with the World Wildlife Fund and local universities to conduct multiple tests of the technology. With the help of the Biomimicry Launchpad and $100,000 Ray C. Anderson Foundation Ray of Hope Prize, their team is now closer to their goal of planting 2.5 million trees in five years. This approach could save 10 gigatons of carbon emissions every year by 2030 and solve a core challenge of reforestation and ecosystem restoration.

WITH YOUR SUPPORT

4,000+ KIDS LEARNED from 150+ TEACHERS ABOUT NATURE-INSPIRED DESIGN in the YOUTH DESIGN CHALLENGE

375+ MENTORS & ADVISORS have SUPPORTED our BGDC & LAUNCHPAD TEAMS

2,484 PEOPLE FROM 51 COUNTRIES HAVE PARTICIPATED in the BIOMIMICRY GLOBAL DESIGN CHALLENGE

96 ENTREPRENEURS in the LAUNCHPAD were trained in NATURE-INSPIRED ENTREPRENEURSHIP & REGENERATIVE BUSINESS MODELS

1.1 MILLION+ PEOPLE ACCESSED information on AskNature IN 2017 AND 2018
Biomimicry is driving a radically different approach to innovation

The 17 Sustainable Development Goals (SDGs) were adopted by all United Nations member states in 2015. They provide a shared blueprint for peace and prosperity for people and the planet, now and into the future. The target is to achieve them by 2030, the same year the UN Framework Convention on Climate Change has identified as the critical deadline in making tangible progress in reversing climate change. Our Biomimicry Launchpad participants from 2017-2018 show how teams from around the world are joining the effort to create solutions targeting multiple SDGs.

Launchpad Team

<table>
<thead>
<tr>
<th>Project</th>
<th>Impact on SDGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSA: Autonomous Nutrient Supply Alternative</td>
<td>1, 3, 5, 9, 12</td>
</tr>
<tr>
<td>Aruga Technologies: Surface design platform using wrinkles to renew and self-clean</td>
<td>9, 11, 15</td>
</tr>
<tr>
<td>B-All: an edible food packaging system</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>BioThermosmart: Thermal management system</td>
<td>1, 6, 9</td>
</tr>
<tr>
<td>Cooltiva: System that takes advantage of the wind and the sun to regulate temperatures</td>
<td>1, 7, 11</td>
</tr>
<tr>
<td>CocoPallet: 100% bio-based and fully circular Export Pallets made from Coconut Waste</td>
<td>1, 10, 11</td>
</tr>
<tr>
<td>Digital Naturalness: Blockchain smart contract templates</td>
<td>1, 2, 4, 9, 11</td>
</tr>
<tr>
<td>EcoSTP: Eco-friendly sewage treatment</td>
<td>1, 9, 11, 12</td>
</tr>
<tr>
<td>extrACTION: Carbon-scrubbing and filtering panel system</td>
<td>1, 7, 13</td>
</tr>
<tr>
<td>Full Circle: Nature-inspired energy generator</td>
<td>1, 7, 8, 12</td>
</tr>
<tr>
<td>HABARI: Barrier against weather to protect crops</td>
<td>1, 3, 4, 6</td>
</tr>
<tr>
<td>NexLoop: Capturing, storing, and distributing rainwater for urban growing</td>
<td>1, 3, 7</td>
</tr>
<tr>
<td>Nucleário: Inexpensive, rapidly deployable approach for large-scale forest restoration</td>
<td>1, 3, 9</td>
</tr>
<tr>
<td>Phalanx Insulation: Panel system applied to exterior of buildings</td>
<td>1, 3, 7</td>
</tr>
<tr>
<td>Portunus: Sustainable production of chitosan, an eco-friendly substance that boosts the innate ability of plants to defend themselves against fungal infections</td>
<td>1, 3, 10</td>
</tr>
<tr>
<td>Psephurus Air Cleaner Equipment (PACE): Solar-powered air-cleaning device incorporated into signage on city buildings</td>
<td>1, 3, 15</td>
</tr>
<tr>
<td>Refish: Affordable, easy to mount device that removes PM 2.5 (particulate matter) from the air</td>
<td>1, 6, 9</td>
</tr>
<tr>
<td>RootLink: Self-organizing system to connect urban farmers with users, reducing greenhouse gas emissions from food transportation</td>
<td>1, 6, 15</td>
</tr>
<tr>
<td>Share-EET: Social experiment events to shift attitudes on food waste</td>
<td>1, 6</td>
</tr>
<tr>
<td>Slant: App allowing people to share food source information</td>
<td>1, 6</td>
</tr>
<tr>
<td>Soil Erosion by Nature: Retractable mesh structure to combat soil erosion</td>
<td>1, 10</td>
</tr>
<tr>
<td>UPOD: Environmentally friendly, self-sustaining, reusable and affordable mosquito-control device</td>
<td>1, 3, 9</td>
</tr>
<tr>
<td>WatchTower Robotics: Bio-inspired robot to detect leaks in water pipelines</td>
<td>1, 3, 15</td>
</tr>
<tr>
<td>WindChill: A non-refrigerated food preservation unit</td>
<td>1, 3, 7, 14</td>
</tr>
</tbody>
</table>

UN Sustainable Development Goals

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
BIOMIMICRY YOUTH DESIGN CHALLENGE

Encouraging students to think in wild new ways

ABOUT THE BIOMIMICRY YOUTH DESIGN CHALLENGE

We launched the Youth Design Challenge because we know that the only way to ensure that the innovators of tomorrow know how to “ask nature” for sustainable solutions is to teach them how today. The YDC is a hands-on, project-based learning experience that challenges middle and high school students to design bio-inspired solutions to fight climate change. It gives classroom and informal educators a framework to introduce biomimicry to students, providing a great context for E-STEM learning, and an interdisciplinary lens on science, engineering, and environmental literacy.

LEARN MORE:
youthchallenge.biomimicry.org
STUDENTS INNOVATE AND LEARN WHILE COMPETING IN THE BIOMIMICRY YOUTH DESIGN CHALLENGE

When two students in Kirstin Bullington’s engineering class decided to take on the challenge of designing a more efficient solar panel, they looked to a seemingly unlikely source for inspiration—the oriental hornet. These students—both seniors at Richland Two Institute of Innovation, a student innovation center for public high school students in Columbia, South Carolina—impressed the Youth Design Challenge judges and were awarded first place in the high school competition of the Challenge.

After researching a wide range of living organisms, the Richland Two students discovered that the oriental hornet is a marvel of sustainable energy generation. It is able to capture sunlight and, via its outer layer (or epicuticle), convert it into electrical energy. The team first tried to mimic the hornet’s epicuticle color, putting filters over solar panels. This ended up restricting light, so they did more research and shifted gears. Their second approach was to mimic the shingle-like surface texture of the epicuticle to build a solar concentrator.

“The first time they tried their [new] prototype, they thought, ‘oh my gosh, it works!’,” said Bullington. “My students blew me away. They always amaze me and come up with better ideas than I could ever come up with.”

“While my initial goal was for [my students] to apply their creativity and problem-solving skills to developing a solution, they gained so much more in terms of appreciation for biological strategies and a greater understanding of the inherent complexity of climate change,” said Bullington. “More importantly, designing a working prototype empowered them to believe that they are capable of making a significant contribution towards reducing the effects of climate change.”

When two students in Kirstin Bullington’s engineering class decided to take on the challenge of designing a more efficient solar panel, they looked to a seemingly unlikely source for inspiration—the oriental hornet. These students—both seniors at Richland Two Institute of Innovation, a student innovation center for public high school students in Columbia, South Carolina—impressed the Youth Design Challenge judges and were awarded first place in the high school competition of the Challenge.

After researching a wide range of living organisms, the Richland Two students discovered that the oriental hornet is a marvel of sustainable energy generation. It is able to capture sunlight and, via its outer layer (or epicuticle), convert it into electrical energy. The team first tried to mimic the hornet’s epicuticle color, putting filters over solar panels. This ended up restricting light, so they did more research and shifted gears. Their second approach was to mimic the shingle-like surface texture of the epicuticle to build a solar concentrator.

“The first time they tried their [new] prototype, they thought, ‘oh my gosh, it works!’,” said Bullington. “My students blew me away. They always amaze me and come up with better ideas than I could ever come up with.”

“While my initial goal was for [my students] to apply their creativity and problem-solving skills to developing a solution, they gained so much more in terms of appreciation for biological strategies and a greater understanding of the inherent complexity of climate change,” said Bullington. “More importantly, designing a working prototype empowered them to believe that they are capable of making a significant contribution towards reducing the effects of climate change.”

When two students in Kirstin Bullington’s engineering class decided to take on the challenge of designing a more efficient solar panel, they looked to a seemingly unlikely source for inspiration—the oriental hornet. These students—both seniors at Richland Two Institute of Innovation, a student innovation center for public high school students in Columbia, South Carolina—impressed the Youth Design Challenge judges and were awarded first place in the high school competition of the Challenge.

After researching a wide range of living organisms, the Richland Two students discovered that the oriental hornet is a marvel of sustainable energy generation. It is able to capture sunlight and, via its outer layer (or epicuticle), convert it into electrical energy. The team first tried to mimic the hornet’s epicuticle color, putting filters over solar panels. This ended up restricting light, so they did more research and shifted gears. Their second approach was to mimic the shingle-like surface texture of the epicuticle to build a solar concentrator.

“The first time they tried their [new] prototype, they thought, ‘oh my gosh, it works!’,” said Bullington. “My students blew me away. They always amaze me and come up with better ideas than I could ever come up with.”

“While my initial goal was for [my students] to apply their creativity and problem-solving skills to developing a solution, they gained so much more in terms of appreciation for biological strategies and a greater understanding of the inherent complexity of climate change,” said Bullington. “More importantly, designing a working prototype empowered them to believe that they are capable of making a significant contribution towards reducing the effects of climate change.”
2018 STUDENT WINNERS Middle School

1st SUNTILE
Punahou School, Honolulu, HI
First place, middle school category

This team looked to the Saharan silver ant’s ability to reflect light, the desert scorpion’s ability to withstand sandstorms with its erosion-preventing exoskeleton, and the honeybee’s hexagonal honeycomb shape to create the SunTile. This innovation fits on roofs in a hexagonal pattern, and is covered in grooves to withstand erosion and microscopic prisms to reflect the sun, creating a long-lasting, sustainable way for desert homes to stay cool.

“Knowing you have done or made something that could save or help someone’s day is probably one of the best feelings in the world. We also enjoyed learning about all of the special talents of animals around the world. From water storage to withstanding pressure, living things are truly the most amazing things on this earth. We are really glad we entered into this competition, because it really helped us learn a lot about ourselves, biomimicry, and why it is important to conserve nature.” - SunTile team

2nd COOLEST BUILDING ON THE BLOCK
Wilbur Wright Middle School, Munster, IN
Second place, middle school category

This team wanted to create a better way to cool computer rooms, which generate a lot of heat. After studying how jackrabbits use their ears to stay cool in extreme heat, they developed a pipe system that uses flowing water in order to cool computer rooms without the use of HFC-spewing air conditioning units.
2018 STUDENT WINNERS High School

1st
TEAM HORNET
Richland Two Institute of Innovation, Columbia, SC
First place, high school category

This team wanted to develop a more efficient way to produce renewable energy, so they created a device to reflect and concentrate UV rays on solar panels, based on the oriental hornet’s ability to generate electricity from sunlight with its exoskeleton.

2nd
KIMHEAMTEAM
Woodbridge High School, Irvine, CA
Second place, high school category

This team’s design harnesses wave energy—an underutilized energy resource—by using strategically-placed piezoelectric kelp-inspired blades that translate the bending movement of blades into electrical charge. They also studied how schools of fish conserve energy by moving in certain flow patterns to learn how best to place these kelp blades to maximize their energy-generation potential.

3rd
huMANGROVE
The Harley School, Rochester, NY
Third place, high school category

This team mimicked the roots of mangrove trees to create a quickly-deployable structure to battle coastal erosion. Their solution is designed to be implemented and removed as needed and to have limited impacts on the ecosystem, since water can still flow within the structure.

This team’s project won an Environmental Innovation Award from the Seneca Park Zoo.
Nurturing a new species of entrepreneur

ABOUT THE BIOMIMICRY GLOBAL DESIGN CHALLENGE + LAUNCHPAD

We’re committed to supporting a new kind of entrepreneur - one who can deploy nature-based solutions that give more than they take. Our annual Biomimicry Global Design Challenge, sponsored by the Ray C. Anderson Foundation, provides an opportunity for university students and professionals to practice biomimicry in action. It also provides a pathway to bring the resulting designs to the next level through the Biomimicry Launchpad, an accelerator program for early-stage biomimicry entrepreneurs that helps them further develop their design concepts and market strategy with business training, mentorship, and legal support. Each year, Launchpad teams compete for the $100,000 Ray of Hope Prize®.

LEARN MORE:
challenge.biomimicry.org
innovation.biomimicry.org/launchpad
LEARNING BIOMIMICRY IN ACTION
WITH THE GLOBAL DESIGN CHALLENGE

The Challenge gives students and early-career professionals the opportunity to learn and practice biomimicry by applying nature-inspired design to create climate change solutions. Below are examples of three teams who entered the Biomimicry Global Design Challenge in 2017 and 2018 as part of their university studies and were later invited to join the Biomimicry Launchpad to work towards bringing their designs to market.

HABARI This University of Utrecht-based team created an automated, open-source design to protect tea plants from frost damage. Inspired by the giant groundsel (Dendrosenecio kilimanjari) and giant lobelia (Lobelia deckeniaii) plants, both native to Kenya, Habari increases farmers’ resilience to weather conditions, and connects the farms with the local community by using local and sustainable products.

REFISH A team of students from the National Taiwan University developed Refish, a device that captures particulate matter - the kind of pollution that is so small and light that it remains in the air longer and can more easily settle into people’s lungs, plants, and more - in an energy-efficient way. The team applied lessons from the filtering functions of African violet leaves and the oral cavities of fish to create a filter that is able to trap particulate matter without getting blocked.

UPOD A team of graduate students from Cornell University’s College of Human Ecology developed the UPOD, a mosquito-control device inspired by the mechanism of the carnivorous Utricularia vulgaris plant. UPOD can help individuals, communities and nations take control of larvae populations and prevent the spread of mosquito-borne diseases.

```
“It is a great experience to work with people who are not of your same profession, it helps to understand the strategies applied from many points of view and it amplifies the ideas of design to a more integrated and multidisciplinary vision.”

- JOSÉ AVILA Participant; Guatemala
```
2017 Ray of Hope Prize winner: Resilient urban farms, inspired by nature
Team NexLoop won the 2017 Ray of Hope Prize for their water management system for urban food producers, inspired by the way living systems capture, store, and distribute water. Since their win, they have spoken at conferences around the world, including the National Science Festival in Croatia and VERGE 18 in Oakland, and are focusing on developing a field-ready prototype. They will be launching their first pilot site on Governors Island, New York City, in spring 2019.

2018 Ray of Hope Prize winner: Restoring the Atlantic rainforest
In October 2018, the Ray of Hope Prize was awarded to Nuclairo, a Brazilian team whose device nurtures and protects tree seedlings, reducing maintenance time so that the Atlantic rainforest can be reforested more quickly. With the help of the Biomimicry Launchpad and the Ray of Hope Prize, their team is now able to secure patents and get closer to their goal of planting 2.5 million trees over the next five years. They recently were profiled in a BBC news segment and have received national and international press coverage.

25 TEAMS

<table>
<thead>
<tr>
<th>Energy Solutions</th>
<th>Water Solutions</th>
<th>Agricultural Solutions</th>
<th>Public Health Solutions</th>
<th>Carbon Capture/Reductions Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

LAUNCHPAD ALUMNI HIGHLIGHTS

APRIL 2017
Evolution’s Solution attends the invitation-only World Food Programme Innovation Accelerator in Bonn, Germany, as part of the World Food Programme / Singularity University “Food in Emergencies” Global Impact Challenge.

FALL/WINTER 2017
BIOCultivator selected to be part of the Women in Tech Forum at PIONEERS 2017 in Austria, and participated at the first CEE Founders’ Summit.

FEBRUARY 2018
Hexagro is accepted to Singularity University’s incubator program.

SEPTEMBER 2018
Hexagro joins the Ellen MacArthur Foundation’s Circular Economy 100 collaborative.

DECEMBER 2018
LifePatch is shortlisted for the Lush Spring Prize.

JULY 2017
Team Planet wins a Dubai 2020 grant to test the Mangrove Still - a desalinating still technology - in Egypt and India.

WINTER 2017/SPRING 2018
Planet teams up with LifePatch to jointly test their systems in a pilot in Cyprus.

MAY 2018
Two Biomimicry Launchpad alumni teams (Planet and BIOCultivator) are part of a consortium that won a €10 million grant from the European Union to demonstrate and test innovations that close water loops, feed the soil, and promote local economies.

DECEMBER 2018
Nexloop wins the Make It In Brooklyn “Innovator of the Year” award.

I am so grateful to have been part of this program, have access to such a wealth of resources and mentorship, and obtain the support needed to help accelerate our product launch.”

-MEGAN HANCK extrACTION
ASK NATURE
Your guide to thinking like an ecosystem

ABOUT AskNature

For over half a million people each year, AskNature is the place they go to find the blueprints for resilient design. As our planet’s temperature rises, innovators need to have free and open access to nature’s design solutions, not locked behind a paywall or hidden in an academic journal. AskNature is organized by functions -- for example how does nature adhere or filter or repel water -- making it user-friendly for designers and engineers.

This free community resource - a curated online library of over 1,700 natural phenomena and hundreds of bio-inspired applications - powers a community of solution seekers with time-tested strategies for creating design that is circular, regenerative, and resilient.

LEARN MORE:
asknature.org
AskNature’s REACH

VISITORS COME TO AskNature TO EXPLORE, LEARN, TEACH, AND DO BIOMIMICRY. THEY:

- Discover unexpected sources of inspiration
- Find biological strategies that correlate to existing design challenges
- Collect sources of primary literature
- Learn information about biomimicry
- Find resources to help communicate ideas
- Find teaching resources

VISITORS IN 2017 & 2018

1.1 MILLION

AUDIENCE

VISITORS from 120 COUNTRIES

SECTORS

- Education 23%
- Architecture, Design, Engineering & Construction 21%
- Science, Research & BioTech 8.8%
- IT, Computers, Electronics & Telecom 8%
- Environment & Land Use 6%
- Health 5.5%
- 5.3% Aviation & Transportation
- 5.3% Government, Non-Profits & Policy
- 5.3% Museums, Art & Media
- 3.7% Other
- 3.3% Business & Banking
- 2.8% Energy
- 2% Fashion & Textiles

CONTENT

- 1,707 Biological Strategies
- 203 Inspired Ideas
- 176 Resources

15 / Biomimicry Institute 17/18 Annual Report
FINANCIALS
FINANCIALS

2017 FINANCIALS

EXPENSES: $971,002
- AskNature 22%
- Design Challenges 42%
- Education 16%
- Fundraising 10%
- Admin & Finance 9%

REVENUE: $1,096,853
- Grants 69%
- Major Donors 13%
- Individual Supporters 3%
- Sponsorships 5%
- Earned Income 10%

2018 FINANCIALS

EXPENSES: $1,301,679
- AskNature 15%
- Design Challenges 33%
- Education 27%
- Fundraising 15%
- Admin & Finance 10%

REVENUE: 1,200,791
- Grants 69%
- Major Donors 18%
- Individual Supporters 2%
- Sponsorships 4%
- Earned Income 7%
SUPPORTERS

BOARD MEMBERS
- Janine Benyus
- Annie Berdy
- Dr. Lauren Birney
- Lisa Craig Gautier
- Kamal el-Wattar
- Natasha Giraudie
- Erika Harrison
- Diana Lee
- Alex O’Cinneide
- Ahmed Rahim
- Kent Snyder
- Marilyn Waite

ADVISORY COUNCIL
- Ibrahim AlHusseini
- Lynelle Cameron
- Karen Cowe
- Brian Dougherty
- Natasha Giraudie
- Ashok Goel
- Paul Hawken
- Stefan Heck
- Sara Nichols
- David Oakey
- Will Parish
- Ahmed Rahim
- Duke Stump
YOUR CONTRIBUTIONS HELP OVER HALF A MILLION PEOPLE EVERY YEAR TEACH, LEARN, AND INNOVATE USING BIOMIMICRY.

FOUNDATION GRANTS

Kendeda Fund
Ray C. Anderson Foundation
Wyncote Foundation
Applied Materials Foundation
New Visions Foundation

CORPORATE CONTRIBUTORS

Lockheed Martin

IN-KIND DONATIONS

Adobe Donation Program
Autodesk, Inc.
Drakes Brewing Co
Frey Vineyards
Microsoft Donation Program
San Diego IP Law Group, LLP
Squire Patton Boggs Law Firm

CORPORATE GIVING AND MATCHING PROGRAMS

Benevity Community Impact Fund
Estee Lauder Companies- Network for Good
Google
IHS Global Inc
Microsoft
Network for Good

$100,000+ CONTRIBUTORS

Margaret and John Haley
David Oakey Designs

$25,000-$99,999 CONTRIBUTORS

Annie Berdy
Deborah Coburn
Kamanya Foundation
Social Relations of Knowledge Institute

$10,000-$24,999 CONTRIBUTORS

Ibrahim AlHusseini
Jeff Chartrand
Lisa Gautier
Nathalie Salles via Abundant Strategies

$5,000-$9,999 CONTRIBUTORS

Katherine Collins
Dr. and Mrs. Loring Conant

$1,000-$4,999 CONTRIBUTORS

David and Dr. Sharman Altshuler
Cornelia W. Bonnie Revocable Trust
April Bucksbaum
The Auryn Fund of Tides Foundation, advised by Kat Conour
Lester Foote
David Fox
Tracy Gary
Mihalis Halkides
Carolyn Mahoney
Harvey L Miller Family Foundation
Russell and Suki Munsell
Linda Paisley
Stuart Rudick
Carolyn and John Schutz
Marilyn Waite
Patricia Waterston
Rebecca Winsor via William H. Donnor Foundation
Nancy Zamierowski
Kathleen Zarsky
CONTRIBUTORS UP TO $999

Alec Aguilar
Monir Ahmed
Wafaa AlHomaidan
Saud Aloud
Richard Altherr
Lacey Ankenman
Richard Austin
Richard Austin
James Bacchi
Lisa Baffi
Mary Baird
Shanti Balararaman
Andres Batista
Dayna Baumeister
Bob Bechtold
Kenan Beker
Christina Bertea
Anne Beswick
Zachary Binkley
Flavia Bisi
Leéna Boone
Norm Borin
Stephane Boucher
Paul Brennan
Robert Brown
Jody Brown
Inge Buchanan
Avril Buchanan
Francesca Cantor
Giselle Carr
Greg Carter
Daphne Carwin
Karen Cash
Jenna Cederberg
Francesca Cerami
CV Chalapati Rao
Leemor Chandally
Karen Chase
Nazry Chik
Roberto Chiotti
Chris Christie
David and Amy Coffman Phillips
Casemmmie Cole-Kweli
Elizabeth Comeaux
Kai Costantini
John Cox
Marc de Catelan
Laura de Crescenzo
Anna Deac
Jon-Michael Deldin
Renan Delepine
Denise DeLuca
Doug Demers
Kay Dengate
Margaret (Peggy) Denney
Astrid DesLandes
Kym Donovan
Darja Dubravcic
Olivia Duncan
Steven Durow
Annette Esnault Filet
Jose Ethereyver
Jane Etherington-Gay
Alessandra Fabbri
Laura Fain
in honor of Isabell Oliver
Noa Falk
Nicholas Franco
Mathis Garcia
Eva Garrett
Natasha Giraudie
Tammy Gladwin
Laura Goldberg
Laurel Gordon
Charles Graham Evans
Matthew Grocock
Julie Gyurgyik
Alex Haas
Marsha Hamacher
Constance Hamilton
Mary Hansel
Jan Harada
Holly Harlan
Michael Kelley Harris
J Mike Hendrix
Alicia Herz
Toby Herzlich
Angela Hooben
Adele Hosken
Perpay Inc
Richard Isaac
Sara Jacobovici
Chanelle James
Tabitha Jayne
Janice Johnson
Elliott Judd
Elksa Kaczmarek
Carolee Kain
Kerstin Kapitzke
Jojo K. Kasinathan
Joan Keefe
Joe Keenan
Laura Keeth-Rowledge
Morgan Keim
Victoria Keziah
Peter and Sue Kezios
Dennis Kiley
Katherine Kirkpatrick
Susan Kirsch
Deanna Knickerbocker
Peter Koch
Bo Kofod
Athanasios Koutsianas
Otis Lam
Yafa Lamm
Moran Laniado
Caroline Laub-Halfen
Diana Lee
Judith Leitch
Jenn Livermore
Jennifer Livermore
Dana Beth Lobell
Andrea Loew
Amy Love
Antonio Lozano Domenech
Tiziano Luccarelli
John and Norine Madden
Mary Elizabeth Madden
Joel Makower
Sunmihith Marepalli
Michelle Marquez
Tyrone Marshall
Lee Martin
Mary Ann Maruska
Austin Marx
Curt McNamara
Ian McNeel
James McRae
Sreenivas Menon
Emma Metwally
Claudia Miller
David Mitchell
Judith Mitchell
Brian Montgomery
Inbar Morag
Chris Morrow
Leanne Muir
Sean Murphy
Mohit Nariani
Christina Nicolson
Tadesse Nigatu
Kristen Nordstrom
Komal Paudyal
Hakan Petersson
Sam Pickett
Anna Pollock
Anne Protas
Caroline Rackley
Herbert Radlinger
Alexandra Raleighski
Giuseppe Ravazzolo
Peggy Rebol
William Reding
Anne Renda
Marian Ring
Sharon Ritter
Sheila Rodriguez
Kevin Rolf
Annick Romain
Carol Rommel
Chandrasekhar Roychoudhuri
Nicolas Saarman
Emily Sadigh
Don Salerno
Ruben Sanchez Souza
Ellen Sanford
Dinesh Sarvodey
Marsha Scheppier
Karen Schneider Brodine
Morris Schopf
Dorna Schroeter
Thomas Schueneman
Virginia Schultz
Steve Seffinger
Marco Serra
Stephanie Sheldon
Kathy Shimata
Lyne Sopchak
Frances Sowa
Vincent Spahr
Cheryl Spector
Linda Spencer
Larry Stambaugh
Evelyne Stanovice
Marjorie Streeter
Douglas Studer
Candace Stump
Patrick Suen
Susan Sullivan
Giovanni Tedeschi
Diana Tedoldi
Naishal Thakker
Carol Thaler
Lynn Thorensen
Juan Sebastian Tobon Conde
Jane Toner
Craig Toone
Daisy Torres
Adena Tryon
Gina Twyble
Lily Urmann
Nina Utne
Harry Uvegi
Subramanian V V
Aranka van der Pol
Jessica Van Meter
Michel Vol
Jean Vreeland
AJ Wacaser
Rebecca Wainscott
Heather Walker
Jeff Wang
John Warner
John Warren
Stephanie Watson
John Webb
Sharon Weil
David White
Kaitlin Williams
Linda Wilson
Karen Wolfson
Jennifer Wood
Paul Wood
Lindy Wright
Roger Yao
Wilson Yik
Margaret Yole
Prof. Dr. Donald York
Brenda Young
VOLUNTEERS

Rabia Ahmed
Andreina Alexatos
Billy Almon
Melina Angel
Suman Apparasu
Jaco Appelman
Alessandra Araujo
Zeynep Arhon
Stefanie Atkinson-Schwartz
Puja Batra
Puja Batra
Patrick Baumann
Lou Bendon
Timothy Bingham
Marie Bourgeois
Marie Bourgeois
Peter Boyer
Catalina Bustillo
Shanley Carlton
Jeff Carpenter
Laura Carranza
Natalie Chen
Yan-Ting Chen
Julia Chiang
Kuowei Chiu
Peggy Chu
Trevor Coddington
Monica Cohen
Brett Criswell
Raul de Villafranca
Gayle DeBruyn
Denise Deluca
Lisa Gauthier
Nina Gibbs
Cindy Gilbert
Dorothy Ginnett
Evan Greenberg
Duncan Griffin
Teo Grossman
Anna Guerrero
Rachel Hahs
Diana Hammer
Mary Hansel
Holly Harlan
Jay Harman
Michael Harp
Travis Heneveld
Greg Horowitt
Bor-Kai Hsiung
Katherine Huded
Natasja Hulst
Thea Hutchinson
Anuj Jain
Lindsay James
Anand Jameson
Hassan Javed
Brian Jessup
Oscar Jiménez Salvador
Jeniffer Joe
Mark Juergensen
Jorge Kanauhauti
Morgan Keim
Kevin Keohane
Betty Khoury
Avery Kintner
Thomas Knittel
Michael Krupp
Dominic Lancaster
John Lanier
Xavier Leonard
Phil Ling
Richard James MacCowan
Colleen Mahoney
Alexander Mandel
Colin Mangham
Jawa Mariappan
Dawn McGee
Tom McKeag
Torrey McMillan
Leticia Meireles
Theresa Millard
Sam Miller
Jenny Mish
Tharelelo Mokogokong
Melissa Moore
Jacquelyn Nagel
Sarah Nelson
Anthea Ng
Peter Niewiarowski
Alejandra Ortiz-Medrano
Miguel Palape
Amy Phillips
Giorgos Profitilotis
Alex Ralevski
Sherry Ritter
Tiffany Roberts
Eva Rocke
Thomas Rossi
Denny Royal
Melinh Rozen
Rudy Ruggles
Shanna Ruyle
Emily Sadigh
David Sanchez Ruano
Rosalinda Sanquiche
Karen Schneider Brodine
Dorna Schroeter
Luisa Schultz
Hannah Schulze
Vikram Shyam
Gamelihilie Sibanda
Dimitri Smirnoff
Josh Stack
Hilary Staples
Robert Suarez
Karen Tempkin
Jane Toner
Bruce Tribbensee
Ksenia Turk
Saskia van den Muijsenberg
Candace Vanderhoff
Jean Vreeland
David Wager
Leon Wang
Eli Weissman
Amber Wierck
Kristin Wolf
Sayuri Yamanaka